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 Light-matter interaction
 Absorption of light

 Forced oscillator model

 Reemission of light 

 Frequency dependent phase
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The interaction of light and matter

Absorption, resonance: gives everything we see. 

Light vibrates matter Matter emits light interferes with the 
original light.  
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Light propagation in medium
 Absorption and Re-emission of the wave energy by the atoms: 

 Initially, the energy of the wave is absorbed by the atom. 
 This energy causes the electrons within the atoms to undergo vibrations.
 After a short vibrational motion, the electrons create a new electromagnetic 

wave with the same frequency but with different phase 
 Waves propagate at slower speed in medium than in vacuum. 

http://www.physicsclassroom.com/mmedia/waves/em.cfm
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When two waves add together with the same exponentials,
we add the complex amplitudes, E0 + E0'.

Phasor addition

Slower phase velocityLaser Absorption
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time
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"Quadrature phase" ±90°
interference:
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That’s why coherence matters!!

time
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Light  Atom  Light

When light of frequency  excites an atom with resonant frequency 0:

An excited atom vibrates at the frequency of the light that excites it 
and re-emits the energy as light of that frequency.

The crucial issue is the relative phase of the incident light and this 
re-emitted light.  For example, if these two waves are ~180° out of 
phase, the beam will be attenuated. We call this absorption.

Electric field 
at atom

Electron 
cloud

Emitted 
field

On resonance

(= 0)

( )ex t( )E t


( )E t
 +

=

Incident light

Emitted light

Transmitted light
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The forced oscillator

When we apply a periodic force to a natural oscillator (such as 
a pendulum, spring, swing, or atom), the result is a forced 
oscillator. 

Examples:

Child on a swing being pushed

Pushed pendulum

Bridge in wind or an earthquake

Electron in a light wave

Nucleus in a light wave

The forced oscillator is one of the most important problems 
in physics. It is the concept of resonance.

Tacoma Narrows Bridge (1940) collapsing 
because oscillatory winds blew at its 
resonance frequency.
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The forced oscillator: math

Consider an electron on a spring with position xe(t), and driven by 
a light wave, E0 exp(j t):

2 2 2
0 0/  exp( )e e e em d x dt m x qE j t  

 
  02 2

0

/
( ) exp( )e

e

m
x t E j t

q


 

 
 

  

So the electron oscillates at the incident light wave frequency (), 
but with a frequency-dependent amplitude.

The solution is:

( )ex t
( )E t


restoring
force

Phase depends on sign of charge

depends on displacement
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Checking our solution

 
 

 
 
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0 0 0 02 2 2 2
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exp( ) exp( ) exp( )e e
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     

       

 
 

 
 
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02 2 2 2
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/ /e e
e e

q m q m
m m q 

   

   
     

       

   
2 2

02 2 2 2
0 0

1 1 1 
   

   
     

       

 
 

2 2
0

2 2
0

1
 

 

 
  

  

Substitute the solution for xe(t)
into the forced oscillator 
equation to see if it works.

2 2 2
0 0/  exp( )e e e em d x dt m x qE j t  

 
  02 2

0

/
( ) exp( )e

e

q m
x t E j t

 

 
 

  
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The problem with this model

Exactly on resonance, when 
= 0, xe goes to infinity.

This is unrealistic (op-amp)

We’ll need to fix this.

( )ex t
( )E t


 
  02 2

0

/
( ) exp( )e

e

q m
x t E j t

 

 
 

  
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The damped forced oscillator

Our solution has infinite amplitude on resonance, which is unrealistic. 
We fix this by using a damped forced oscillator: a harmonic oscillator 
experiencing a sinusoidal force and viscous drag.                      

e
e

dxm
dt



2
2
0 02 exp( )e

ee e e
ed xm md x qE

t
x

d t
j tm

d
    

2 2
0

( / )( ) ( )
( )

e
e

q mx t E t
j  

 
    

The electron still oscillates at the light frequency and with a 
potential phase shift, but now with a finite amplitude for all .

The solution is now:

We must add a viscous drag term: depends on velocity
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Why we include the damping factor, 

Atoms spontaneously decay to the ground state after a time.

Also, the vibration of a medium is the sum of the vibrations of all 
the atoms in the medium, and collisions cause the sum to cancel.

Collisions dephase
the vibrations, causing
cancellation of the
total medium vibration, 
typically exponentially.

(We can use the same 
argument for the emitted 
light, too.)

Atom #1

Atom #2

Atom #3

Sum:

time
Recall coherence

and linewidth!
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Assuming            , this becomes:

Complex Lorentzian approximation

Consider: 

0

0

/
2 ( )

/ 1
( ) /2 2

e

e

q m
j

q
j

m
   

 



 




 





0 

2 2 2 2

1 1 j j
j j j

 
    

  
  

       

2 2
0 0 0

/ /( )
( )( )

e e
e

q m q mx t
j j       

 
    

In terms of the variables 0   and  = , the function 
1/(+ j ), is called a Complex Lorentzian.  Its real and imaginary 
parts are:
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Complex Lorentzian

2 2 2 2

1 j
j
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
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   
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smaller , narrower linewidth
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Damped forced oscillator for light-driven atoms

The forced-oscillator response is sinusoidal, with a frequency-
dependent strength that's approximately a complex Lorentzian: 

0 0

1 1( ) ( ) ( )
2 ( / 2) ( / 2)e

e

qx t E t E t
m j j      

     
               

Here, q < 0.

When  << 0, the electron vibrates 
180° out of phase with the light wave:

0

1( ) ( ) ( )
( )ex t E t E t


 
    

 

1( ) ( ) ( )
( / 2)ex t E t jE t

j
 

   
 

When  = 0, the electron vibrates 
90° out of phase with the light wave:

1( ) ( ) ( )
( )ex t E t E t


 
    

When  >> 0, the electron vibrates 
in phase with the light wave:
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The relative phase 
of an electron 
cloud’s motion with 
respect to input 
light depends on 
the frequency.

Recall that the atom’s 
resonant frequency is 
0, and the light 
frequency is .

The electron cloud
Electric field 

at atom
Electron 

cloud
Weak 
vibration 
180° out 
of phase

Strong 
vibration
90° out of 
phase

(270 °
phase 
lag)

Weak 
vibration
in phase

Below 
resonance
<< 0

On 
resonance 
= 0

Above 
resonance
>> 0
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Okay, so now we know what the lightwave
does to the atom.

But, what does the atom do to the lightwave?
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Re-emitted light from an excited atom

The re-emitted light may interfere 
constructively, destructively, or, 
more generally, somewhat out of 
phase with the original light wave.

We model this process by 
considering the total electric field, 

Maxwell's Equations will allow us to solve for the total field, 
E(z,t). The input field will be the initial condition.

E(z,t) =  Eoriginal(z,t) +  Ere-emitted(z,t)

+

=

Incident light

Emitted light

Transmitted light

z
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How to take medium into account?
 In vacuum

 Now that we have polarization

 If polarization is taken as scalar

ED


0

PED


 0

1 1
0

( ) ( )P E 

So, if you want to see the effect of the medium
you need to use the electric field density D.

ED )( )(1
0 1  

( ) ( )eP t Nqx t
 
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2

0 2

2 2

2 2 2

1E E
c t

P
tz

 
 





 

The induced polarization,    , contains the effect of the medium and 
is included in Maxwell’s Equations:

Maxwell's Equations for a Medium

0 0

0           

0           

BE E
t

EB B
t

 


     




    



   


   

P


This extra term turn it into the Inhomogeneous Wave Equation:

The polarization is the 
driving/source term and tells 
us what light will be emitted.

0
P
t

 





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The inhomogeneous wave equation

The induced polarization, , is due to the medium:

where:

( ) ( )eP t Nqx t
 

P


( )P t
2 2

2

2

22 02

1E E
z

P
tc t

 





 

0
0

1( , ) exp[ ( )]
2 ( / 2)e

qP z t Nq E j t kz
m j


   

   
        

0

1( ) ( )
2 ( / 2)e

e

qx t E t
m j   

   
        

E(z,t)
0P

x

For our 
vibrating 
electrons:
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The electric-field amplitude depends on z

The effect of the medium is to change the field complex amplitude with 
distance. And because the polarization depends on E, its amplitude, P0, will 
also.

   0 0( , ) ( ) exp   ( , ) ( ) expandE z t E z j t kz P z t P z j t kz          

Constant in time

Specifically, the envelopes, E0(z) and P0(z), are assumed to vary 
slowly; the fast variations will all be in the complex exponential.

The time derivatives are easy (as before, they just multiply by a 
factor of –2) because the envelopes are independent of t:

2 2

2 2 2

1 E E
c t c


 



2
2

0 02

P P
t

  
 


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Pulse envelope and carrier

-0.2 0 0.2
-1

0

1 carrier

envelope

 tjtAtE exp)(Re)( 

envelope carrier
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The Slowly Varying Envelope Approximation

But the ∂2E/ ∂z2 derivative is trickier.

 0( , ) ( ) expE z t E z j t kz   

 
22

20 0
02 2

( , ) 2 expE EE z t jk k E j t kz
z z z


  

           

 0
0

( , ) ( ) expEE z t jk E z j t kz
z z

         

Because variations of the envelope, E0(z), in space will be slow, 
we’ll neglect the 2nd z-derivative.

The z-derivatives:

   
22

0 0 0
02 2

( , ) exp expE E EE z t jk j t kz jk jkE j t kz
z z z z

 
                        
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SVEA continued

Substituting the derivatives into the inhomogeneous wave equation:

   
2

2 20
0 0 0 022 exp expEjk k E E j t kz P j t kz

z c
    

 
               

2 2 2

02 2 2 2

1E E P
z c t t

  
 

  

20
0 02 Ejk P

z
 

  


Now, use k = /c. And canceling the 
complex exponentials leaves:

2 2
0 0 0 0 0

0 0 0
0

( / )
2 2 2

E k kP P j P
z jk jk

    



   




Benefit using carrier-envelope
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Re-emitted light is 90° out of phase with P

Usually, P0 = P0 (E0), and hence P0(z), too. 
But consider for the moment P0 ~ constant. 

Converting to finite differences, the re-emitted field is just E0, and 
taking the negative charge of electron into consideration, it will be:

0 0
02

kE j z P


   Note the j, which means that the re-
emitted field has a 90° phase lead with 
respect to the electron cloud motion.

0
0

02
E kj P
z 


 


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Phase (frequency dependent) relation

 Input vs. oscillator

 Input vs. re-emitted light 

below
resonance above

resonance

On resonance

E
le

ct
ro

n 
cl
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d 

ph
as

e 
la

g
R

e-em
itted w

ave phase lag

270 °

180 °

360 °

+90∘
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The re-emitted 
wave leads the 
electron cloud 
motion by 90°

This phase shift 
adds to the 
potential phase shift 
of the electron 
cloud motion with 
respect to the input 
light.

Electric field 
at atom

Electron 
cloud

Emitted 
field

Weak 
emission
90° out of 
phase

Strong 
emission
180° out 
of phase

Weak 
emission
-90° out 
of phase

Below 
resonance
<< 0

On 
resonance 
= 0

Above 
resonance
>> 0

The entire process

180°

270°

0°
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 Dispersion 
 Complex Lorentzian

 Real part: n()

 Imaginary part: absorption 
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Solving for the slowly varying envelope

0 0 0 0
0

1
2 ( / 2)e

qP Nq E E
m j

 
   

   
        

Define , the susceptibility:

0 0

1
2 ( / 2)e

Nq q
m j


    

   
        

 0  
and  = 2 2

2

0
2 2

Im{
2
Re } }{

e

Nq j
m

j
  



 

      


  

 

 
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The wave undergoes attenuation
 Attenuation coefficient 

 Refractive index (n-1)

 0 0( ) (0)exp [ / 2 ( 1) ]E z E j n k z   

where  is the absorption coefficient and n is the refractive index.

so that:

| Im{ }|k 
1( 1) Re{ }
2

n  
Define new quantities 
for the real and 
imaginary parts of :

0
02

E kj E
z


  



 0 0 0( ) (0)exp (0)exp Im{ Re{
2

} }
2
k kE z E j z E j j z               

0
0

02
E kj P
z 


 



The solution:

2 2
0

2

2

2

Im{
2
Re{ } } 

e

Nq j
m

j


 








      




 

  



32

The complete electric field in a medium

The electromagnetic wave in the medium becomes (combining the
slowly varying envelope with the complex exponential):

Simplifying:

 0( , ) (0)exp [ / 2 ( 1) ] exp[ ( )]E z t E j n k z j t kz     

0( , ) (0) exp[( / 2) ] exp[ ( )]E z t E z j t nkz   

Absorption   Refractive index
attenuates the field changes the k-vector

E0(z)

To summarize, in a medium:

0 0( ) (0) exp[( / 2) ] /E z E z k nk n     and
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n and 

n comes from Re {}:

 
2

0 0

/( 1) Re Re
2 2 2 ( / 2)

eNq mk kn k
j


    

 
      

 
2

0 0

// 2 Im Im
2 2 2 ( / 2)

eNq mk k
j

 
    

 
     

2
0
2 2

0 0

2

2 2
0 0

( )1
4 ( ) ( / 2)

/ 2    
2 ( ) ( / 2)

e

e

Nqn
m

Nq
cm

 
    


   

 
     

 
    

Simplifying:

 comes from the imaginary part of :

These results 
are valid for 
small values 
of these 
quantities.



34

Refractive index and absorption coefficient

2 2
0

2 2 2 2
0 0 0 0

/ 2         1
2 ( ) ( / 2) 4 ( ) ( / 2)e e

Nq Nqn
cm m

 
        


  

   

-5 0 5
-1
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Frequency, 0
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Lightwave suffering attenuation

 Movie
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A light wave in a medium

The speed of light, the wavelength (and k), and the amplitude 
change, but the frequency, , doesn’t change.

n = 1 n = 2

k0 nk0

Vacuum (or air) Medium

Absorption depth = 1/

n
Wavelength decreases

00 exp[( / 2) ](0) exp[ ( )]E j nkz t z 0 0( , ) (0) exp[ ( )]E z t E j t k z 



I(z) =  I(0) exp(-z)
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n()
Since resonance frequencies exist in many spectral ranges, the refractive 
index varies in a complex manner. 

Electronic resonances usually occur in the UV; vibrational and
rotational resonances occur in the IR; and inner-shell electronic
resonances occur in the x-ray region.

n increases with frequency, except in anomalous dispersion regions.
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Refractive indices for glasses

We’ll use 
n = 1.5
for the 
refractive 
index of 
the glass 
we usually 
encounter.
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The Sellmeier Equation

Coefficient Value

B1 1.03961212

B2 2.31792344x10-1

B3 1.01046945

C1 6.00069867x10-3

C2 2.00179144x10-2

C3 1.03560653x102

These values are 
obtained by 
measuring n for 
numerous 
wavelengths and 
then curve-fitting.
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Practical numbers for material dispersion

dn
/d




m

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Rainbow

Dispersion of the refractive index allows prisms to separate 
white light into its components and to measure the wavelength 
of light.

Dispersion can be good or bad, depending on what you’d like to do.

Dispersive 
element

White light

Dispersed beam

n()
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Dispersion: pulse chirping

Normal dispersion
n larger for higher frequency
vp=c/n “blue” travels slower

Anomalous dispersion
n smaller for higher frequency
vp=c/n “red” travels slower

啁啾
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Optical experimental data


